Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Proc Natl Acad Sci U S A ; 121(15): e2321502121, 2024 Apr 09.
Article En | MEDLINE | ID: mdl-38564636

The release of paused RNA polymerase II (RNAPII) from promoter-proximal regions is tightly controlled to ensure proper regulation of gene expression. The elongation factor PTEF-b is known to release paused RNAPII via phosphorylation of the RNAPII C-terminal domain by its cyclin-dependent kinase component, CDK9. However, the signal and stress-specific roles of the various RNAPII-associated macromolecular complexes containing PTEF-b/CDK9 are not yet clear. Here, we identify and characterize the CDK9 complex required for transcriptional response to hypoxia. Contrary to previous reports, our data indicate that a CDK9 complex containing BRD4 but not AFF1/4 is essential for this hypoxic stress response. We demonstrate that BRD4 bromodomains (BET) are dispensable for the release of paused RNAPII at hypoxia-activated genes and that BET inhibition by JQ1 is insufficient to impair hypoxic gene response. Mechanistically, we demonstrate that the C-terminal region of BRD4 is required for Polymerase-Associated Factor-1 Complex (PAF1C) recruitment to establish an elongation-competent RNAPII complex at hypoxia-responsive genes. PAF1C disruption using a small-molecule inhibitor (iPAF1C) impairs hypoxia-induced, BRD4-mediated RNAPII release. Together, our results provide insight into potentially targetable mechanisms that control the hypoxia-responsive transcriptional elongation.


Nuclear Proteins , Transcription Factors , Humans , Transcription Factors/genetics , Transcription Factors/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Gene Expression Regulation , Cyclin-Dependent Kinases/metabolism , Cyclin-Dependent Kinase 9/genetics , Cyclin-Dependent Kinase 9/metabolism , RNA Polymerase II/genetics , RNA Polymerase II/metabolism , Phosphorylation , Hypoxia , Transcription, Genetic , Positive Transcriptional Elongation Factor B/genetics , Positive Transcriptional Elongation Factor B/metabolism , Bromodomain Containing Proteins , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism
2.
Mol Cell ; 83(16): 2896-2910.e4, 2023 08 17.
Article En | MEDLINE | ID: mdl-37442129

The BET family protein BRD4, which forms the CDK9-containing BRD4-PTEFb complex, is considered to be a master regulator of RNA polymerase II (Pol II) pause release. Because its tandem bromodomains interact with acetylated histone lysine residues, it has long been thought that BRD4 requires these bromodomains for its recruitment to chromatin and transcriptional regulatory function. Here, using rapid depletion and genetic complementation with domain deletion mutants, we demonstrate that BRD4 bromodomains are dispensable for Pol II pause release. A minimal, bromodomain-less C-terminal BRD4 fragment containing the PTEFb-interacting C-terminal motif (CTM) is instead both necessary and sufficient to mediate Pol II pause release in the absence of full-length BRD4. Although BRD4-PTEFb can associate with chromatin through acetyl recognition, our results indicate that a distinct, active BRD4-PTEFb population functions to regulate transcription independently of bromodomain-mediated chromatin association. These findings may enable more effective pharmaceutical modulation of BRD4-PTEFb activity.


Nuclear Proteins , Transcription Factors , Nuclear Proteins/metabolism , Transcription Factors/metabolism , Histones/metabolism , Gene Expression Regulation , Chromatin/genetics , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism
...